The unfolding kinetics of ubiquitin captured with single-molecule force-clamp techniques.

نویسندگان

  • Michael Schlierf
  • Hongbin Li
  • Julio M Fernandez
چکیده

We use single-molecule force spectroscopy to study the kinetics of unfolding of the small protein ubiquitin. Upon a step increase in the stretching force, a ubiquitin polyprotein extends in discrete steps of 20.3 +/- 0.9 nm marking each unfolding event. An average of the time course of these unfolding events was well described by a single exponential, which is a necessary condition for a memoryless Markovian process. Similar ensemble averages done at different forces showed that the unfolding rate was exponentially dependent on the stretching force. Stretching a ubiquitin polyprotein with a force that increased at a constant rate (force-ramp) directly measured the distribution of unfolding forces. This distribution was accurately reproduced by the simple kinetics of an all-or-none unfolding process. Our force-clamp experiments directly demonstrate that an ensemble average of ubiquitin unfolding events is well described by a two-state Markovian process that obeys the Arrhenius equation. However, at the single-molecule level, deviant behavior that is not well represented in the ensemble average is readily observed. Our experiments make an important addition to protein spectroscopy by demonstrating an unambiguous method of analysis of the kinetics of protein unfolding by a stretching force.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Direct observation of markovian behavior of the mechanical unfolding of individual proteins.

Single-molecule force-clamp spectroscopy is a valuable tool to analyze unfolding kinetics of proteins. Previous force-clamp spectroscopy experiments have demonstrated that the mechanical unfolding of ubiquitin deviates from the generally assumed Markovian behavior and involves the features of glassy dynamics. Here we use single molecule force-clamp spectroscopy to study the unfolding kinetics o...

متن کامل

Dwell-time distribution analysis of polyprotein unfolding using force-clamp spectroscopy.

Using the recently developed single molecule force-clamp technique we quantitatively measure the kinetics of conformational changes of polyprotein molecules at a constant force. In response to an applied force of 110 pN, we measure the dwell times of 1647 unfolding events of individual ubiquitin modules within each protein chain. We then establish a rigorous method for analyzing force-clamp dat...

متن کامل

Force-clamp spectroscopy of single-protein monomers reveals the individual unfolding and folding pathways of I27 and ubiquitin.

Single-protein force experiments have relied on a molecular fingerprint based on tethering multiple single-protein domains in a polyprotein chain. However, correlations between these domains remain an issue in interpreting force spectroscopy data, particularly during protein folding. Here we first show that force-clamp spectroscopy is a sensitive technique that provides a molecular fingerprint ...

متن کامل

Force-clamp analysis techniques give highest rank to stretched exponential unfolding kinetics in ubiquitin.

Force-clamp spectroscopy reveals the unfolding and disulfide bond rupture times of single protein molecules as a function of the stretching force, point mutations, and solvent conditions. The statistics of these times reveal whether the protein domains are independent of one another, the mechanical hierarchy in the polyprotein chain, and the functional form of the probability distribution from ...

متن کامل

Water's role in the force-induced unfolding of ubiquitin.

In atomic force spectroscopic studies of the elastomeric protein ubiquitin, the β-strands 1-5 serve as the force clamp. Simulations show how the rupture force in the force-induced unfolding depends on the kinetics of water molecule insertion into positions where they can eventually form hydrogen bonding bridges with the backbone hydrogen bonds in the force-clamp region. The intrusion of water i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 101 19  شماره 

صفحات  -

تاریخ انتشار 2004